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Population Modeling

Population Dynamics

Population dynamics refers to how populations change over time and space. This could mean a

population spreading out to new areas or disappearing from places it used to be found. Even if a

population stays in the same areas, its size might go up or down, stabilize, or follow a regular pattern

of change.

Population ecologists use di↵erent mathematical methods to study how populations change over

time in terms of their sizes. Some of these methods show how populations grow without limits, while

others consider limits imposed by factors like limited resources. By using these mathematical models,

scientists can accurately describe how populations change and even predict what might happen in

the future!
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Geometric Growth

To start, let’s think about what a “population growth rate” really means.

growth rate =
change in population

change in time
=

births� deaths

change in time
= birth rate� death rate

Now let’s introduce some variables:

• N(t) = the number of individuals at time t,

• �t = change in time,

• �N = N(t+�t)�N(t) = change in population size,

• birth rate B = bN , per capita birth rate b multiplied by the population size N ,

• death rate D = dN , per capita death rate d multiplied by the population size N .

So we end up with

growth rate =
�N

�t
=

N(t+�t)�N(t)

�t
= bN � dN = (b� d)N ⌘ rdN, (1)

in which rd ⌘ b�d is the net per capita growth rate. Most organisms live in a seasonal environment,

so we usually consider changes in population every year (�t = 1 year). Eq. (1) becomes

N(t+ 1)�N(t) = rdN(t),

or

N(t+ 1) = N(t) + rdN(t) = (1 + rd)N(t).

Stop and Think

If the initial population N(0) = N0 (called “N-naught”), what is the population size after 1/2/3

years? Can you come up with a formula that tells the population size after n years?

In general, we obtain the formula for the population size in Year t with an initial size N0

N(t) = (1 + rd)
tN0. (2)

We notice that
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• If rd > 0 (i.e. birth rate is larger than death rate), the population is growing;

• If rd = 0, the population stays the same;

• If �1  rd < 0, the population is shrinking (dies out when rd = �1).

Stop and Think

rd is guaranteed to be no less than �1, why?

Example 1

Suppose there were 100 rabbits in a region back in 2020. If on average the population grows by

60% every year, how many rabbits would there be in 2023?

Solution:

According to the problem, we can set 2020 as our initial time point, t = 0. So N(0) = 100. We

also know that rd = 0.6. By Eq. (2), we have

N(3) = (1 + rd)
3N0 = (1 + 0.6)3(100) ⇡ 410 rabbits.

Exercise 1

In fact, rabbits might produce new babies every month. If instead, the population grows by

60%/12 = 5% every month, how many rabbits would there be in 2023?

Exponential Growth

Average vs. Instantaneous Rate of Change

The birth/death/growth rates mentioned above represent “average rates”. For instance, if there are

120 births in a year, it doesn’t necessarily mean they occur uniformly throughout the year. It’s

possible that 80 births happen in the first half-year and 40 in the second half. When looking at

births per quarter, there could be 20 in the first, 60 in the second, 30 in the third, and 10 in the

fourth. Such analysis can extend to births per month or even per day, o↵ering a finer understanding

of population dynamics.
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Now instead of �t = 1 year or 1 month, let’s assume �t = 1 hour, 1 minute, or even 1 second! By

setting this �t smaller and smaller, eventually, we end up with

lim
�t!0

N(t+�t)�N(t)

�t
= lim

�t!0

�N

�t
=

dN

dt
.

If you have not yet seen this in your high school math textbook, the notation
dN

dt
is called the

“derivative”, which tells you the slope of the tangent line to the graph of the function at a specific

point. We take the limit of Eq. (1) and obtain the following (di↵erential) equation:

lim
�t!0

N(t+�t)�N(t)

�t
=

dN

dt
= rN, (3)

where r is the “instantaneous” per capita growth rate. Note that we use r to distinguish it from

the discrete-time growth rate rd. This might seem a bit intimidating, but it just means that the

derivative of a function is a function of itself!

• If
dN

dt
= 0, it means that the derivative is always 0, so N(t) is a horizontal line.

• If
dN

dt
= r > 0, it means that the derivative is always some fixed positive value, so N(t) linearly

increases.
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• If
dN

dt
= rt, r > 0, it means that the derivative is a function of time t. When t gets larger, the

derivative gets larger, and N(t) increases faster.

• If
dN

dt
= rN , r > 0, it means that the derivative is a function of the function itself. When N(t)

gets larger, the derivative gets larger, N(t) increases faster, and the derivative increases even

faster!

This model is more realistic for a population that changes over a continuous time scale. Solving Eq.

(3) is beyond the scope of these lectures. For now, we are simply provided that the solution is

N(t) = N0e
rt, (4)

given the initial population N(0) = N0. Here, e is the base of natural logarithms (e ⇡ 2.71828).

Stop and Think

Although solving Eq. (3) is challenging for us, we can actually check if N(t) = N0ert is indeed

a solution to Eq. (3).

If you have not learned how to calculate derivatives, try with the following rules (we use f 0(x)

to denote the derivative of f(x)):

(1) The derivative of f(x) = kx is f 0(x) = k.

(2) The derivative of f(x) = ex is f 0(x) = ex.

(3) The derivative of cf(x) is cf 0(x).

(4) The derivative of f(g(x)) is f 0(g)g0(x) (f 0(g) means treating g = g(x) as a variable and

calculating the derivative of f with respect to g).
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Example 2

Suppose there were 100 rabbits in a region back in 2020. If r = 0.6 individuals/individual/year

was the per capita growth rate and we assumed that the population grew continuously, how

many rabbits would there be in 2023?

Solution:

Similar to Example 1, we set 2020 as our initial time point, so N(0) = 100. Therefore, by Eq.

(4), we have

N(3) = N0e
3r = 100e3(0.6) = 100e1.8 ⇡ 604 rabbits.

Logistic Growth

In a geometric growth model or an exponential growth model, it is assumed that both the birth rate

and death rate remain constant. However, if b > d is always true, then the population will grow

indefinitely, which is clearly unrealistic. As the population grows, there will be a shortage of food

and habitat; there will be greater risks of predation and disease outbreaks. Therefore, when the

population grows, the population should grow at a lower rate, or even shrink. The logistic growth

model is density-dependent, which means that the growth rate is a↵ected by the population size.

Discrete-time Model

Let’s first look at the discrete-time model, the population growth rate is given by

N(t+�t)�N(t)

�t
= rdN(t)

✓
1� N(t)

K

◆
. (5)

Here, we introduce a new term, carrying capacity K, which is defined as the largest population

that can be supported indefinitely, given the resources available in the environment. The term

(1�N(t)/K) represents density dependence.

Stop and Think

Comparing Eq. (5) with Eq. (1), we can consider rd(1 � N(t)/K) as the growth rate in the

logistic model. What does this growth rate tell us?

From Eq. (5), we can observe the followings:
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• When N(t) is much less than K, N(t)/K ⇡ 0 and 1�N(t)/K ⇡ 1, Eq. (5) essentially becomes

Eq. (1). In other words, when the population size is much smaller than the carrying capacity,

resources are abundant, and the population will experience geometric growth.

• When N(t) increases, 1 �N(t)/K decreases. So a larger population results in a lower growth

rate.

• When N(t) > K, N(t)/K > 1 and 1 � N(t)/K < 0. When the population grows beyond the

carrying capacity, the growth rate becomes negative, indicating that the population will shrink.

If we let �t = 1 in Eq. (5), we obtain a function that describes the population size at the next time

point t+ 1:

N(t+ 1) = N(t) + rdN(t)

✓
1� N(t)

K

◆
. (6)

A very interesting fact about Eq. (6) (sometimes referred to as “logistic map”) is that the population

growth trajectories are di↵erent with di↵erent values of rd.

Let’s use Excel to plot population growth trajectories with N0 = 10, K = 100, and we vary rd =

0.8, 1.5, 2.2, 2.5, 2.7, 2
p
2.
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• When rd = 0.8, the population asymptotically approaches the carrying capacity.

• When rd = 1.5, the population overshoots the carrying capacity and exhibits damped oscilla-

tions.

• When rd = 2.2, the population eventually oscillates between 2 values.

• When rd = 2.5, the population eventually oscillates among 4 values.

• When rd = 2.7, the population trajectory does not have a specific pattern. (Chaos!)

• When rd = 2
p
2 ⇡ 2.828, the population eventually oscillates among 3 values. (Hah?)

Chaos is very sensitive to initial conditions. Slightly changing the initial population size N0 would

result in very distinct results. Let’s plot the population trajectories with N0 = 10, 11, K = 100, and

rd = 2.7.
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Cobwebbing

Let’s modify Eq. (6)

N(t+ 1) = N(t) + rdN(t)

✓
1� N(t)

K

◆

= N(t)


1 + rd

✓
1� N(t)

K

◆�

= N(t)


(1 + rd)�

N(t)

K/rd

�

= (1 + rd)N(t)

2

41� N(t)

K
⇣

1
rd

+ 1
⌘

3

5 ⌘ pN(t)

✓
1� N(t)

q

◆
(7)

if we let p = 1+ rd and q = K(1/rd +1). One way to investigate the dynamics of Eq. (7) graphically

is to use “cobwebbing”, through:

(1) Rewrite Eq. (7) as N(t+ 1) = f(N(t)), so the function f(N) = pN(1�N/q).

(2) Pick an initial value N0, draw a vertical line to f(N) curve to find f(N0).

(3) Draw a horizontal line to N(t+ 1) = N(t) diagonal to find N(t1) = f(N0).

(4) Draw a vertical line to f(N) curve to find f(N1).

(5) Draw a horizontal line to N(t+ 1) = N(t) diagonal to find N(t2) = f(N1).

(6) Repeat (4) and (5).

Here is an example where we set p = 1 + rd = 2, q = K(1/rd + 1) = 1, and N0 = 0.1. Note that

• the horizontal axis is N(t),

• the vertical axis is N(t+ 1),

• the red line is N(t+ 1) = N(t), and

• the blue curve is N(t+ 1) = f(N) = 2N(t)(1�N(t)).
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We found that eventually, the trajectory ends up at the point where two curves intersect, N(t+1) =

N(t) = f(N(t)). Such a point N̄ = f(N̄) is called the “fixed point”. Now let’s draw the trajectory

where we start with a di↵erent initial value N0 = 0.05:

We should convince ourselves that for any initial condition, the trajectory approaches the fixed point

N̄ .
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Exercise 2

Using the diagrams on the Appendix page, draw the cobweb diagrams for N(t+1) = pN(t)(1�
N(t)) with the following values of p and N0 = 0.1. Find where each trajectory ends up. Discuss

what trajectory each cobweb diagram stands for.

(a) p = 2.4

(b) p = 3.2

(c) p = 4.0

Continuous-time Model

Similarly, we can take the limit of Eq. (5) and get a di↵erential equation for the continuous-time

model:
dN

dt
= rN

✓
1� N

K

◆
, (8)

whose solution is

N(t) =
K

1 + Ce�rt
, (9)

with C =
K

N0
� 1 if the initial population N(0) = N0. Unlike the discrete-time model, if N0 < K, no

matter what growth rate r is, the population will grow and approach the carrying capacity eventually.

Here, we plot the population trajectories with N0 = 5, K = 10000, and r = 0.8/1.5/2.2/2.5/2.9.
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Exercise 3

Scientists found that there is usually a minimal threshold value for the species to survive. Such

a phenomenon, called “Allee E↵ect”, changes Eq. (8) to

dN

dt
= rN

✓
1� N

K

◆✓
N

A
� 1

◆
.

Analyze the equation by considering

(a) what will happen to N(t) if A < N0 < K?

(b) what will happen to N(t) if 0 < N0 < A?

Life Tables

So far, we limited our prediction of populations by assuming that all individuals in a population

are identical. However, many plants and animals have di↵erent life stages in their populations. For

example, for animals, the stages could include egg, juvenile, and adult. Life stages could also purely

depend on age (e.g. one year old, two years old, etc.). By using a life table, we are able to consider

di↵erent rates of reproduction (producing babies), growth, and death. For example, a typical life

table could look like:

Egg Juvenile Adult

Egg 0 50 300

Juvenile 0.02 0.25 0

Adult 0 0.08 0.5

where stages in each row are the “to” stages and stages in each column are the “from” stages. For

example, 50 in the first row and second column represents the rate of change from juveniles to eggs

next year. From now on, we refer to the entry at row i and column j as aij. For example, a12 = 50.

Stop and Think

What does the number in each box mean? Why are there some zeros? Can those zeros be

positive numbers?
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• The first row represents the reproduction rates. a11 = 0 since eggs cannot produce babies.

a12 = 50 means that each juvenile can produce 50 new babies on average each year; a13 = 300

means that each adult can produce 300 new babies on average each year.

• The diagonal represents the proportions surviving and remaining in the same stage. a11 = 0

since eggs will either grow into juveniles or die after a year. a22 = 0.25 means that 25% of the

juveniles will survive and remain as juveniles next year; a33 = 0.5 means that 50% of adults

will survive and remain as adults next year.

• The sub-diagonal (a21 = 0.02 and a32 = 0.08) represents the proportions surviving and advanc-

ing to the next stage. In other words, 2% of eggs will survive and become juveniles, and 8%

of juveniles will survive and become adults. Adult is the final stage, so they either survive and

remain as adults, or die.

• Eggs cannot directly grow to adults, so a31 = 0. Adults cannot go back to the juvenile stage,

so a23 = 0.

Stop and Think

From the above table, what are the death rates for each stage?

Exercise 4

Now let’s look at a life table that purely depends on age. Assume we know that the average life

span of an animal is 4 years.

Age 0 1 2 3 4

0 0 0 5 10 50

1 0.01 0 0 0 0

2 0 0.25 0 0 0

3 0 0 0.25 0 0

4 0 0 0 0.4 0

(a) At what age does this species start to give birth to babies?

(b) Explain why the entries below the sub-diagonal (bottom left) are all zeros.

(c) Explain why the diagonal is all zeros.
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Matrices

Before moving on to the applications of life tables, let’s introduce (or review) the idea of matrices.

Simply speaking, a matrix is a rectangular table of numbers arranged in rows and columns, such as

A =

"
1 2

3 4

#
, B =

"
5 6

7 8

#
, C =

h
1 2

i
, D =

"
1

2

#
.

We call a matrix with m rows and n columns as an m⇥ n (m-by-n) matrix. For example, A and B

are both 2⇥ 2, C is 1⇥ 2, and D is 2⇥ 1. We define the following operations (that are necessary for

this topic):

• For matrices of the same size (same number of rows AND same number of columns), the sum

of matrices is the sum of entries of each matrix. For example,

A+B =

"
1 + 5 2 + 6

3 + 7 4 + 8

#
=

"
6 8

10 12

#
.

We cannot add A and C, nor can we add A and D!

• Multiplying a matrix with a scalar (a number) is multiplying every entry of the matrix with

that scalar. For example,

2A =

"
2⇥ 1 2⇥ 2

2⇥ 3 2⇥ 4

#
=

"
2 4

6 8

#
, 2C =

h
2⇥ 1 2⇥ 2

i
=

h
2 4

i
.

• Multiplication of two matrices is defined if and only if the number of columns of the left matrix

is the same as the number of rows of the right matrix. For example,

– we can do both AB and BA;

– we can do AD but not DA;

– we can do CA but not AC.

If matrix M is p⇥ q and matrix N is q⇥ r, then the matrix multiplication MN is p⇥ r. If we

let mij be the entry in the i-th row and j-th column of M , nij be the entry in the i-th row and

j-th column of N , [MN ]ij be the entry in the i-th row and j-th column of MN , then

[MN ]ij = mi1n1j +mi2n2j + · · ·+miqnqj.

Matrix multiplication also satisfies the associativity rule (MN)K = M(NK).
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Exercise 5

For the above matrices A, B, C, and D, calculate

(a) AB

(b) BA

(c) AD

(d) CA

Projecting a Population Matrix through Time

Suppose we have a life table written in a matrix

A =

2

64
0 50 300

0.02 0.25 0

0 0.08 0.5

3

75 ,

and the initial population of each stage is also stored in a matrix

N(0) = N0 =

2

64
1000

50

10

3

75 .

Let’s calculate AN(0):

AN(0) = AN0 =

2

64
0 50 300

0.02 0.25 0

0 0.08 0.5

3

75

2

64
1000

50

10

3

75 =

2

64
0⇥ 1000 + 50⇥ 50 + 300⇥ 10

0.02⇥ 1000 + 0.25⇥ 50 + 0⇥ 10

0⇥ 1000 + 0.08⇥ 50 + 0.5⇥ 10

3

75 =

2

64
5500

32.5

9

3

75 .

What does the result mean?

• 0⇥ 1000 + 50⇥ 50 + 300⇥ 10 is the number of new eggs produced by all juveniles and adults

in the first year.

• 0.02⇥ 1000+0.25⇥ 50+0⇥ 10 is the number of eggs that survive and grow into juveniles plus

the number of juveniles that survive and remain as juveniles in the first year.

• 0 ⇥ 1000 + 0.08 ⇥ 50 + 0.5 ⇥ 10 is the number of juveniles that survive and grow into adults

plus the number of adults that survive and remain as adults in the first year.
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Therefore, AN(0) is the population of each stage after one year, N(1). Similarly,

N(2) = AN(1) = A(AN0) = (AA)N0 = A2N0

is the population after two years. So we obtain

N(t+ 1) = AN(t),

and thus

N(t) = AtN0 = (AA · · ·A| {z }
t times

)N0.

Exercise 6

The above matrix

A =

2

64
0 50 300

0.02 0.25 0

0 0.08 0.5

3

75

can be written as the sum of two matrices, A = R + S, where R only contains reproduction

rates and S only contains survival rates. Write down R and S, use the same initial population

matrix N0, and do the following:

(a) Calculate RN0 and explain what the result represents.

(b) Calculate SN0 and explain what the result represents.

(c) Sum up RN0 and SN0 and compare with AN0 we just calculated. What do you find?
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Appendix

Using the following diagrams, draw the cobweb diagrams for N(t + 1) = pN(t)(1 � N(t)) with the

following values of p and N0 = 0.1 (10 iterations).

(a) p = 2.4

(b) p = 3.2
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(c) p = 4.0
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